How do chemical denaturants affect the mechanical folding and unfolding of proteins?
نویسندگان
چکیده
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the "mechanical chevron plot" as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.
منابع مشابه
Expanding the pressure technique: insights into protein folding from combined use of pressure and chemical denaturants.
The fundamental principles derived from in vitro protein folding experiments have practical application in understanding the pathology of diseases of protein misfolding and for the development of industrial processes to produce proteins as pharmaceuticals and biotechnological reagents. High pressure as a tool to denature or disaggregate proteins offers a number of unique advantages. The emphasi...
متن کاملUnfolding proteins by external forces and temperature: the importance of topology and energetics.
Unfolding of proteins by forced stretching with atomic force microscopy or laser tweezer experiments complements more classical techniques using chemical denaturants or temperature. Forced unfolding is of particular interest for proteins that are under mechanical stress in their biological function. For beta-sandwich proteins (a fibronectin type III and an immunoglobulin domain), both of which ...
متن کاملMechanical and chemical unfolding of a single protein: a comparison.
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force. We compare this with chemical unfoldi...
متن کاملProtein folding: from theory to practice.
A quantitative theory of protein folding should make testable predictions using theoretical models and simulations performed under conditions that closely mimic those used in experiments. Typically, in laboratory experiments folding or unfolding is initiated using denaturants or external mechanical force, whereas theories and simulations use temperature as the control parameter, thus making it ...
متن کاملRedesigning the hydrophobic core of a four-helix-bundle protein.
Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 375 1 شماره
صفحات -
تاریخ انتشار 2008